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A B S T R A C T

Real-time health diagnostics/prognostics and predictive maintenance/control of lithium-ion (Li-ion) batteries
are essential to reliable and safe battery operation. This paper presents a physics-based (or mechanistic) ap-
proach to Li-ion battery prognostics, which enables online prediction of remaining useful life (RUL) with con-
sideration of multiple concurrent degradation mechanisms. In the proposed approach, robust online prediction
of RUL is achieved by employing a non-linear least squares method with dynamic bounds that traces the evo-
lution of individual degradation parameters. The novelty of this approach lies in its ability to incorporate me-
chanistic degradation analysis results into RUL predictions using nonlinear models. Results from a simulation
study with eight Li-ion battery cells demonstrate that the mechanistic prognostics approach produces more
accurate RUL predictions than a traditional capacity-based prognostics approach in 78 of the 80 cases considered
(97.5% of the time). Additionally, it is shown that the use of dynamic bounds ensures a low level of uncertainty
in the prediction throughout the entire life of a cell.

1. Introduction

Lithium-ion (Li-ion) batteries are widely used in consumer electro-
nics, implantable medical devices, and transportation applications,
however, with age the electrical performance of the cell decreases
[1–5]. The cell’s capacity is the total amount of energy stored in the
fully charged cell and is an important indicator of the state of health of
the cell [6–8]; remaining useful life (RUL) refers to the available service
time or number of charge-discharge cycles left before the capacity fade
reaches an unacceptable level [8,9]. Extensive research has been con-
ducted on RUL assessment of general engineered systems. In general,
three categories of approaches have been developed to estimate RUL
distribution: (i) model-based approaches [10–16], (ii) data-driven ap-
proaches [17–23], and (iii) hybrid approaches [24–26]. These ap-
proaches, although not developed specifically for Li-ion battery prog-
nostics, can generally be adapted for RUL assessment of Li-ion batteries.

One of the earliest studies on Li-ion battery prognostics proposed a
Bayesian framework with particle filter for RUL prediction of Li-ion
battery based on impedance measurements [27]. To eliminate need for
impedance measurement equipment, researchers developed various
model-based approaches that predict RUL by extrapolating a capacity

fade model [3,28–37]. Most of these approaches develop RUL predic-
tion by simply modeling and extrapolating the capacity fade via the use
of non-linear least squares (NLLS) [28,31] or particle filter
[3,28–31,33–35,37], without understanding the underlying degrada-
tion mechanisms (see the classical approach in Fig. 1). Such an extra-
polation does not consider the degradation from any underlying me-
chanism and thus could result in an intolerably large prediction error
[38].

This research proposes a novel physics-based (or mechanistic)
prognostics approach where robust prediction of RUL is achieved by
leveraging quantitative degradation analysis in a model-based prog-
nostics framework (see Fig. 1). The proposed approach, termed me-
chanistic prognostics, captures the trends of degradation from three
major mechanisms. These degradation parameters include the loss of
active materials (LAMs) of the positive and negative electrodes, mp and
mn, and the (relative) slippage of the positive electrode, δpn (i.e. loss of
lithium inventory (LLI)). Post-mortem analyses of aged Li-ion cells have
identified these mechanisms as major causes of capacity loss [39–41].
The frameworks and implementation details of the classical capacity-
based prognostics approach and the proposed mechanistic prognostics
approach are graphically presented in Fig. 2. While the mechanistic
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prognostics approach proposed here is specifically formulated for the
prognostics of Li-ion batteries, this approach could also be implemented
in any other engineered system where the system can be decomposed
into its constituent components and the system health is dependent on
the health of each component [42].

Modeling the trends of degradation from the three mechanisms re-
quires the selection of an appropriate method. In this work, an NLLS
method is selected due to its robustness, simplicity, and computational
efficiency [31]. The use of NLLS for battery prognostics through
tracking the trend of capacity fade has been well studied in the litera-
ture [28,31]. When a proper mathematical model is selected, NLLS is
capable of providing an accurate representation of the data set. Once an
appropriate model has been selected (in the offline phase) and the
model’s coefficients have been determined using the NLLS method (in
the online phase), the fitted model can be used to extrapolate the data
set into the future for online prognostics. In the proposed mechanistic

prognostics approach, three mathematical models are used to capture
the evolutions of the three degradation parameters (i.e. one model for
each degradation parameter). These mathematical models are then
used to extrapolate the degradation parameter estimates over future
charge-discharge cycles to the point where the cell capacity reaches the
failure limit. The parameter estimates at any given cycle are then used
as inputs for a half-cell model, as shown in Fig. 3, to provide an estimate
of the cell capacity.

As mentioned before, NLLS requires the selection of a proper
mathematical model. With only a limited number of observations from
a testing (online) data set, the model coefficients solved for by the NLLS
algorithm are generally unsatisfactory. Given additional information
from training (offline) data sets, all or some of the coefficients can be
constrained within predefined ranges of the coefficients solved for using
the additional information. Various restrictions on the model coeffi-
cients are presented in this work, all of which are set through the use of

Fig. 1. Schematic diagrams of the existing and proposed battery prognostic approaches.

Fig. 2. Flowchart detailing the methods and sequence of steps in the implementations of the classical capacity-based prognostics approach and the proposed
mechanistic prognostics approach.
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a training data set. Bounding the coefficients within a certain percen-
tage of the “best-fit” coefficients obtained using a training set was found
to be most accurate and convenient, within certain limitations. Models
with tighter bounds tend to produce predicted RULs closer to those
predicted by the training set while models with less stringent bounds
were more capable of adapting to the true degradation behavior of the
cell, particularly in cases where the true degradation trend of the cell
greatly varies from those of the training cells. To compensate for this
tradeoff between the tighter and losers bounds, this work introduces the
concept of dynamic bounds. These dynamic bounds result in a prog-
nostics approach that relies heavily on its training set in the early stage
of the cell’s life and slowly loses its reliance as the cell’s life progresses.

2. Review

This section provides a review of the analytical half-cell model, on-
board estimation of degradation parameters, and the non-linear least
squares method for battery prognostics.

2.1. Half-cell model

Half-cell curve analysis was first introduced by Bloom et al. and
later popularized by Dahn's group as a non-destructive method to
analyze the health of a battery cell by reproducing the full-cell curve
through two half-cell curves, the positive electrode half-cell curve and
the negative electrode half-cell curve [43,44]. The half-cell curve ana-
lysis is done by reconstructing the differential voltage/capacity (dVdQ/
dQdV) of the full-cell curve by taking the difference between those of
the positive and negative electrodes. The dVdQ curves are used to re-
veal the electrodes phase transformation during charge and discharge
as peaks, which are easier to visualize. These peaks serve as the char-
acteristic features that facilitate the curve fitting during the half-cell
curve analysis. Three important degradation parameters of a battery
cell, LLI and LAMs on both electrodes, can be extracted from the ana-
lysis.

The mass of active material is used to adjust the width of the half-
cell curve of each electrode. The LLI is analyzed through the relative
movement of the two half-cell curves. Researchers have shown that a
full-cell curve constructed through half-cell curve analysis by adjusting

the three degradation parameters can achieve decent agreement with a
measured full-cell curve [43,44]. An illustration of half-cell curve
analysis is shown in Fig. 4.

In this work, the three degradation parameters are assumed to
evolve over time following certain rules that have been reported in the
literature. Specifically, LLI grows proportionally to the square root of
time (i.e. following the t1/2 rule) [45] and the growth of LAM on either
electrode follows an exponential function [46]. The resulting capacity is
calculated through a differential voltage analysis algorithm which used
LiCoO2 and graphite half-cell curve data to calculate the full-cell curve
data with cutoff voltage of 3.5 V for end-of-discharge voltage and 4.1 V
for end-of-charge voltage. A flowchart depicting the half-cell model is
shown in Fig. 3.

2.2. On-board estimation of degradation parameters

Early identification of reliability issues and proactive prevention of
failures require the capability of battery management system (BMS).
More specifically, BMS should be capable of on-board estimation of the
degradation parameters (i.e., LLI, and LAMs on both electrodes) of in-
dividual battery cells that quantify the degrees of degradation from the
mechanisms. Most recent works have focused on offline estimation of
the degradation parameters using the half-cell model [43,47]. Existing
parameter estimation methods use either least-squares numerical opti-
mization [44,48] or stochastic optimization [49] to determine optimum
values of the degradation parameters that produce the best agreement
between the measured and estimated full-cell V vs. Q or dV/dQ vs. Q
curves. These methods are well suited for the diagnostics of degradation
mechanisms in an offline environment, where a precise measurement of
the V vs. Q curve (and thus the dV/dQ vs. Q curve) can be obtained
using high-precision testing equipment. However, none of these offline
methods consider the various noise sources in the on-board measure-
ments of V and Q. To the authors’ knowledge, the only work that at-
tempted to make half-cell analysis applicable to on-board BMS adopted
particle filtering to infer the degradation parameters from the mea-
surement of the full-cell dV/dQ curve [50]. Nevertheless, this recent
work did not consider noise in the on-board measurements of V and Q.
The proposed methodology assumes that the estimation errors of the
three degradation parameters all follow zero-mean Gaussian distribu-
tions with the following values of standard deviation: 0.25mg for mp

and mn and 0.05 mAh for δpn. These values are derived from pre-
liminary investigations conducted by the authors. To ensure that the

Fig. 3. Flowchart detailing the half-cell model that is used to generate simu-
lated cell data and produce capacity values for the proposed mechanistic
prognostics approach.

Fig. 4. Half-cell curve analysis with the key components annotated.
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proposed mechanistic prognostics approach is capable of dealing with
higher levels of uncertainty in parameter estimation, a noise in-
vestigation is carried out in this work.

2.3. Non-linear least squares method

Non-linear least squares (NLLS) is a form of least squares analysis
that is used to fit a nonlinear mathematical model with n unknown
coefficients to m observations, such that m> n. Computationally, NLLS
are solved through successive iterations of a two-step process. First, the
selected nonlinear mathematical model is linearized around the initial
guesses for the model coefficients using a first-order Taylor series and
solved. Secondly, the error between the initial guess and the solved
model is calculated. The two steps are repeated till a minimization of
the error is obtained. This iterative process requires good initial guesses
to enable short calculation times. The requirement can easily be met for
the work presented here as the number of unknown coefficients (n) is
relatively low, being only 3 or 4 as presented in the following section.
Additionally, the same degradation parameters from different battery
cells evolve in a similar manner, allowing for static initial guesses for
any given parameter. For the duration of this work, the NLLS fitting is
accomplished using the Symfit Python package [51].

3. Methodology

Investigation of the newly proposed mechanistic prognostics ap-
proach was performed using degradation parameter estimates synthe-
tically generated for eight Li-ion battery cells. The synthetic data gen-
eration involved two steps. In the first step, the true degradation
parameters for eight cells were generated using eight sets of model
parameter data with each set depicting the evolution of the LAMs on the
positive and negative electrodes and the relative slippage on the posi-
tive electrode [46]. The evolution of the LAM on the positive or ne-
gative electrode follows an exponential function in the following:

= −
−m t m a( ) ·e b t

0
/ (1)

where m(t) is the mass of the positive or negative active material as a
function of the number of cycles (t) and m0 is the initial active mass (g).
The variables a and b are used as adjustable coefficients to introduce
cell-to-cell variation. The equation used for the relative slippage follows
the square root of time [45,46] and takes the following form:

= −t a tδ ( ) δ ·pn pn,0
1/2 (2)

where δpn(t) is the relative slippage as a function of the number of
cycles (t), δpn, 0 is the initial slippage due to the formation of an initial
solid electrolyte interface layer, and a is an adjustable parameter to
introduce cell-to-cell variation. The true capacities of each cell were
then calculated through the use of the half-cell model that takes the
cell’s degradation parameters as inputs. The capacity and parameter
data sets span 250 charge-discharge cycles and are presented in Fig. 5
as data lines of various styles.

In the second step, a noise was introduced into the degradation
parameter data as a normally distributed Gaussian noise and is intended
to simulate the estimation error that would be present during the pro-
cess of inferring the parameters from the full-cell V and Q measure-
ments as discussed in Section 2.2. To investigate the effects of noise (or
estimation error) on the performance of the mechanistic prognostics
approach, integer multiples of the previously defined standard devia-
tions were applied to the data sets. Fig. 5 presents the parameter esti-
mates used for the eight cells, where the noisy parameter estimates
(dots) are distributed about the true parameter values (lines). To im-
prove readability, Fig. 5 presents every fourth data point for the highest
level of noise tested, fifty times that defined in Section 2.2.

Mathematical models for the capacity and degradation parameters
were chosen that were capable of accurately reproducing the non-linear

shapes of a cell’s capacity and degradation parameters, while still
maintaining simple mathematical expressions. For consistency with
previously published work in the field [28,31], the following mathe-
matical model was used for the implementation of the capacity-based
prognostics approach:

= +M t a c( ) ·e ·eb t d t· · (3)

where M is the model output, t is the number of charge-discharge cycles
and a, b, c, and d are the coefficients that need to be determined via
online model fitting. Due to its versatility, Eq. (3) was also used to
model the evolution of the relative slippage on the positive electrode. A
similar equation was developed for modeling the evolutions of the ac-
tive masses (and thus LAMs) on the positive and negative electrodes:

= + −M t a c( ) ·e ·(1 e )b t d t· · (4)

a, c, and d and are the coefficients that need to be determined online
and =b 0 is considered a constant. This formulation of the equation
was chosen for its consistency with Eq. (3) in terms of the number of
parameters, and their locations and relative effects on the final fitting
results. Online degradation tracking was achieved by determining the
model’s best-fit coefficients based on the current and past observations.
The fitted models were then used to infer the degradation parameters
past the current observation point (or cycle). In this work, four model
fitting strategies are used, and these include: i) fitting 1 coefficient (c),
ii) fitting 2 coefficients (c and d), iii) fitting all coefficients unbounded
(with =b 0 for Eq. (4)), and iv) fitting all coefficients with various le-
vels of percentage bounds. These model fitting strategies were selected
for continuity with previously published work [28,31]. In all these
cases, except fitting all coefficients, the remaining coefficients were set
using training data. For each testing cell, its training set was formed
from the data from the other seven cells. The cells, numbered #1
through 8 are ordered such that cell #1 is the cell with the least dis-
agreement between itself and its training set, while cell #8 is the cell
with the highest level of disagreement between itself and its training
set. Therefore, the cells considered in this work consist of cells that act
similar to the average of their respective training sets (e.g. cells #1, 2,
and 3) and cells that can be considered as outliers (e.g. cells #6, 7, and
8).

For the bounded data sets, parameter bounds are set as a percentage
of the coefficient’s (a, b, c, and d) value, as determined by the cell’s
training set. A tighter bound will force the NLLS algorithm to maintain
a prediction closer to the prediction generated by the training set, while
a looser bound will allow the model to rely more on observation data as
it becomes available. RUL predictions made in the early stages of the
cell’s life cycle benefit from the tighter bounds as they have a higher
reliance on the training data set. However, as more observations be-
come available the looser bounds allow the mechanistic prognostics
approach to learn from the online observations. To leverage the benefits
of both the tighter (early-stage benefits) and loser (late-stage benefits)
bounds, the concept of dynamic bounds that shift throughout the life
cycle of a battery cell is introduced, termed dynamic bounds. Here, the
concept of dynamic bounds is investigated using three equations to
control the dynamic bounds, as presented in Fig. 6. These include
linear, exponential, and logarithmic growth functions that were se-
lected to demonstrate the effects of dynamic bounds under various si-
tuations. Functions used in developing the dynamic bounds, as pre-
sented in Fig. 6, are unity functions that start with 0 at charge-discharge
cycle 0 and scale to 1 at cycle 250, the last measurement point in the
capacity and parameter data sets. This allows the bounds to be scaled to
fit various final bound values following the different progression shapes
presented in Fig. 6. For example, a dynamic bound with a final value set
to 500% would start with 0 at cycle 0 (relying completely on the
training set to select the model parameters) and finish as 500% at cycle
250. At 250 cycles, the model fitting for a testing cell relies completely
on the cell’s observations as a 500% difference from the training sets
coefficients was found to be unobtainable at 250 cycles for all the data
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sets tested here. As expected, the charge-discharge cycle where the
bounds cease to affect the coefficient selection is dependent on a cell’s
capacity level, the level of agreement between that cell and its training
set and the level of the bounds set. The effect of changing the final
bound values on the prognostics results was investigated for 70 evenly
spaced final bound values between 0 and 500%. Each final bound value
was repeated three times, for all eight cells, at the noise levels discussed
in Section 2.2 to obtain a clearer representation of a typical response. In
total, 10,080 individual cell cases were investigated for the six dynamic
bounds cases considered.

Comparison of the capacity-based and mechanistic prognostics ap-
proaches is achieved by calculating the mean RUL prediction error for
each of the eight cells over five runs. The aforementioned model fitting
strategies, 1 coefficient, 2 coefficients, all coefficients unbounded, and
all coefficients bounded at 5, 10, 25, 50, and 75%, are investigated.
Additionally, dynamic bounds for the linear, exponential and

logarithmic control equations with a final bound value of 500% are also
investigated.

A noise study was performed to investigate how the level of noise
present in the online measurements (or estimates) of the capacity and
degradation parameters manifests itself in the RUL predictions for both
the capacity-based and mechanistic prognostics approaches. Noise was
added as fifty integer multiples to the levels of noise assumed to be
present in the online measurement of cell parameters, as discussed in
Section 2.2. These tests were again repeated 3 times to obtain a general
representation of how noise affects prognostics and to limit the effect of
any single sample points of high noise. The data is presented as the
average error over all eight cells tested, for 5 model fitting strategists
for both prognostics methods. In total, 12,000 noise cases for individual
cell cases were investigated in this noise study. Lastly, the increase in
online computational resources required by the proposed mechanistic
approach over that by the classical capacity-based approach is

Fig. 5. Degradation cases for 8 cell models, generated with the highest level of measurement noise, showing the: (a-b) capacity data; (c-d) mass loss of the positive
electrode; (e-f) mass loss of the negative electrode; and (g-h) positive electrode slippage where (a),(c),(e), and (g) report the results for cells #1-4 and (b),(d),(f), and
(h) report the results for cells #5-8.
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investigated.

4. Results

This section presents the results for the proposed mechanistic
prognostics approach, including the proposed dynamic bounds used in
selecting the mathematical model’s coefficients.

4.1. Remaining useful life predictions

Computation of the RUL can be made at any point, termed inspec-
tion point, in the life cycle of a battery cell. Fig. 7 presents the capacity
predictions for cell #4 (testing cell) using the capacity-based
(Fig. 7(a)–(c)) and the mechanistic prognostics (Fig. 7(d)–(f)) ap-
proaches for various coefficient fitting strategies. Cell #4 was selected
because it provides a clear illustration of several key prognostics fea-
tures. First, it can be observed that the testing cell and its training set,
generated from the other 7 cells, do not strongly agree. More precisely,
the training set estimates that the cell should reach its capacity
threshold in 176 cycles versus the 152 cycles achieved by cell #4.
Model fitting strategies that rely heavily on the training set (e.g. 1
coefficient and bounded 5%) produce capacity estimates for the testing
cell that stay close to those of the training set. In contrast, fitting
strategies that impose looser bounds on the parameters (e.g. 2 coeffi-
cients, all coefficients unbounded, and all coefficients bounded at 50%)
can produce capacity estimates that vary greatly from those by the
training set, allowing them to take advantage of new observation data
as it becomes available. However, this feature means that the predic-
tions made by these strategies can diverge from the data when a low
number of observations are available as observable in Fig. 7(d) for the
unbounded set. As presented in Fig. 7, solving Eqs. (3) and (4) with
unbounded coefficients results in solutions that can overfit the available
data when a low number of testing data points are available. While it is
not recommended to use unbounded coefficients for generating RUL
predictions, they are included here for reference and comparison with
the other bounded methods. With an increasing number of observa-
tions, the loosely bounded model fitting strategies are capable of ac-
curately predicting the cell’s future capacities. This attribute can be
seen for the bounded 50% predictions in Figs. 7(d)–(f) where an in-
crease in the number of available observations results in the bounded
50% predictions converging onto the actual capacity observations from

the cell. Provided that an appropriate coefficients estimation strategy is
selected, the mechanistic approach is shown to provide better predic-
tion accuracy than the capacity-based approach. In total, ignoring the
unbounded coefficients fitting strategy, the mechanistic approach out-
performed the capacity-based approach in 78 of the 80 cases con-
sidered, or 97.5% of the time. This increase in RUL predictions is
mainly due to the inability of the capacity-based approach to account
for the sharp change in capacity in the first few charge-discharge cycles.
This disagreement in the first few cycles is represented in the RUL plots,
provided later in this paper, as an overestimation of the cell’s RUL.

The effect of changing inspection points is further expanded upon in
Fig. 8 where the mechanistic capacity predictions, made at 15, 25, 50,
and 100 charge-discharge cycles, are shown for cell #8 with the coef-
ficients bounded at 50%. Here, cell #8 was selected because it exhibits
the largest studied disagreement between its capacities and those esti-
mated by its training set. In the early stages, as expected, the predic-
tions vary widely due to the fact that the coefficients have only loose
constraints provided by the 50% bounds. However, as the number of
observations increases, the looser bounds result in the NLLS being able
to track and predict the cell’s true capacities. The capability of the
mechanistic prognostics approach with loose bounds to track the time-
varying fade behavior of a cell that strongly deviates from its training
set is a great advance over the use of tight-fitting bounds. Furthermore,
it should be noted that the unbounded coefficient fitting solution pro-
vides highly divergent predictions for both the capacity-based and
mechanistic prognostics approaches. Due to its inability to provide
useful RUL predictions, it is mostly neglected for the remainder of this
work.

The RUL plots for each cell are provided in Fig. 9, where Fig. 9(a)
and (b) presents the RULs for each cell as predicted by the capacity-
based and mechanistic prognostics approaches, respectively. Results are
presented as RUL over life consumed, where a threshold of 80% of the
initial capacity is used as the failure limit to determine the cell’s end of
life and RUL. Therefore, the cell’s capacity data is presented as a
straight line between maximum RUL and the maximum life consumed.
For all the cases presented, the predicted RULs are zero for the first four
charge-discharge cycles due to the NLLS algorithm needing at least 5
observation points for model fitting, as discussed in Section 2.3. This
discontinuity is ignored in the remaining discussion. The RUL plots for
both the capacity-based and mechanistic prognostics approaches de-
monstrate that the coefficients fitting strategies that rely on tighter
bounds (1 coefficient and 5% bounded) tend to provide RUL estima-
tions closer to the training sets, as would be expected. In contrast, fit-
ting strategies that are loosely bound to the training sets (2 coefficients
and 50% bounded) demonstrate a high level of noise until a sufficient
number of observations become available. Thereafter, these fitting
strategies demonstrate that they are capable of accurately predicting
the RULs of cells that vary widely from their respective training sets,
and this feature is seen in the prediction results on cells #6, 7, and 8.
Overall, the capacity-based prognostics approach possesses a high level
of overestimation in the early stages of a cell’s life cycle. This is caused
by the inability of the capacity-based prognostics approach to re-
produce the highly nonlinear portion of the cells capacity fade in its
early stages, as shown in Fig. 7. After a sufficient number of observa-
tions are obtained the capacity-based RUL predictions converge onto
the real data set after a sufficient number of observations come online.
The number of observations needed is a function of the level of dis-
agreement between the testing data set and its training set. The higher
the level of disagreement, the more observations that are needed before
the predicted RUL converges onto the true RUL. The RUL predicted by
the mechanistic prognostics approach is characterized by having a high
level of chaotic noise in the early stages of life and converging onto the
cells’ true RULs quicker than that by the capacity-based approach. The
capability of the RUL estimated using the mechanistic approach to
converge onto the cells’ true RULs quicker than the capacity-based
prognostics approach, for cells that diverge greatly from their training

Fig. 6. Linear, exponential, and logarithmic control equations for dynamic
NLLS bounds, presented as a unit function.
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sets, is a marked improvement over the capacity-based prognostics
approach. Again, cells #6, 7, and 8 show the difference between the
capacity-based (Fig. 9(a)) and mechanistic (Fig. 9(b)) approaches in the
prediction of a cell’s RUL for the case where the cell’s true capacities
greatly differ from those of its training set.

A further exploration of the RUL predictions is presented in Table 1.
It lists the error measured as the root mean square error (RMSE) be-
tween each cell’s predicted RUL and its true RUL for each charge cycle
excluding the first 25 charge-discharge cycles. The first 25 charge-dis-
charge cycles were ignored because these exhibited a high level of noise
in both cases. Table 1 lists results for all the model fitting strategies
investigated, including the dynamic bounds that are discussed later in
this section. Results were obtained by running each cell five times, with
the noise levels defined in Section 2.2, and taking the average of all the
runs. This was done to obtain an accurate representation of the prog-
nostics ability of each fitting strategy. The level of improvement for the
mechanistic prognostics approach over that of the capacity-based
prognostics approach is listed in Table 2. These values were calculated
by subtracting the mechanistic error results from the capacity-based
results for each cell and fitting strategy investigated. Therefore, a po-
sitive number is associated with an improvement in RUL prediction
accuracy while a negative number is associated with a decrease in the
RUL prediction accuracy for that particular cell and fitting strategy. For
clarity, the negative numbers are all highlighted in Table 2. Ignoring
the unbounded coefficient fitting strategy, that already possessed a high
level of prediction error, the mechanistic approach demonstrated an
improvement over the capacity-based approach 97.5% of the time. In
only two cases did the capacity-based prognostics approach outperform
the mechanistic prognostics approach, however, these improvements
were small and only achieved on cell cases that had a relatively strong
agreement between its real capacities and those of its training set.

4.2. Dynamic bounds

Here, the concept of dynamic bounds is inspected. First a series of

Fig. 7. Capacity life prediction for cell #4 using (a) capacity-based prognostics inspected at 25; (b) 50; (c) 100 charge-discharge cycles; (d) mechanistic prognostics
inspected at 25; (e) 50; and (f) 100 charge-discharge cycles.

Fig. 8. Mechanistic capacity predictions for cell #8 with 50% bounded coeffi-
cients at inspections points of 15, 25, 50, and 100 charge-discharge cycles.
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tests were performed to validate the performance of the three sets of
previously proposed dynamic bounds, as shown in Fig. 6, at various
final bound levels. Fig. 10(a) shows the error results, again quantified as
the RMSE for the charge-discharge cycles excluding the first 25 cycles.
For both the capacity-based and mechanistic prognostics approaches,
the exponential control equation for increasing the dynamic bounds
demonstrated the most usable prognostics results. Here, usability is
defined in terms of an RUL prediction that can be accurately used by a
BMS to properly manage loads and/or schedule cell replacement. The
high usability of the exponential control equation for the dynamic
bounds is to be expected as it forces the model to rely heavily on the
training set in the early stages and then quickly, in the later stages,
switches to allow the RUL to be predicted using the online data. For low
levels of the final dynamic bound value, the linear and logarithmic
control equations were found to provide a low level of error. This low
level of noise was mainly due to their capability to minimize the error
in the early stages of a cell’s life cycle rather than minimizing error in

the later portions of the cells life, as desired. Also, the linear and
logarithmic control equations experience a relatively small range where
these equations are at their minimum error values when compared to
the exponential control equation. Therefore, it can be stated that the
exponential control equation is better suited to providing reliable and
repeatable prognostic results due to its capability to improve predic-
tions over the cells entire life cycle and the simplicity in choosing a final
bounded value.

Fig. 11 presents the RUL predictions by the capacity-based and
mechanistic prognostics approaches. While in certain conditions the
RULs predicted with the dynamic bounds controlled with the linear or
logarithmic equation converged onto the true RULs sooner, these pre-
dictions always possessed a higher level of noise than the predictions
obtained with the dynamic bounds using the exponential growth
equation. This noise, while not detrimental to prognostics in the later
stages of a cell’s life, adds a level of uncertainty that may be un-
acceptable in cases where accurate RUL prediction is needed by BMSs

Fig. 9. RUL results for: (a) capacity-based prognostics approach; and (b) mechanistic prognostics approach.
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to properly manage loads and/or schedule replacement. In comparison,
the dynamic bounds controlled with the exponential growth equation
demonstrate a low level of noise in the early stages of the prognostics,
therefore, resulting in a nice clean RUL prediction as presented in
Fig. 11. Of particular interests are the RUL predictions of the dynamic
bounds controlled by the exponential growth equation for the battery
cells that strongly disagree with their training sets (cells #6, 7, and 8).
Here, RUL calculated using the dynamic bounds method with the ex-
ponential growth equation starts out by following the training sets, then
as more online observations become available the predicted RULs start
to converge onto the cell’s true RULs. This feature is observed in
Fig. 11(b) for cell #6 and 7 where the dynamic bounds method with the
exponential growth equation provides the RUL predictions with the
least amount of noise and is capable of accurately predicting the cells’
end-of-life conditions. Furthermore, as the training set of a cell starts to
diverge more from the cell’s real condition (e.g. cell #8), the RUL
prediction made with the exponential growth equation starts to require
a higher level of online observations to accurately predict the cell’s
RUL. It should be noted that for cell #8, the RULs predicted by the
linear and logarithmic control equations converge onto the true RULs
quicker than those by the exponential. However, their high level of
uncertainty in the early stages makes their predictions less reliable from
a load management or cell replacement point of view. The special case
of cells that vary greatly from their training sets and the optimum

methods for their prognostics is beyond the scope of this introductory
study.

4.3. Robustness to noise

To evaluate the robustness of the prognostics approaches presented
here with respect to noise, an estimated noise signature for the on-
board estimation of the degradation parameters is assumed, amplified,
and added to the degradation parameter estimates as scalar multiples of
the originally estimated noise. These results are presented in Fig. 10(b-
c) for a few selected model fitting strategies with Fig. 10(b) and (c)
showing the results of the capacity-based and mechanistic approaches,
respectively. Again, the error results are calculated as the RMSE for the
charge-discharge cycles after ignoring the first 25 cycles. While some
model fitting strategies demonstrate the majority of their errors in the
early stages of development, this whole cycle error calculation ap-
proach allows for an accurate representation and comparison of each
fitting strategy over the entire data set. As demonstrated in Fig. 10(b-c),
the addition of higher levels of noise to the on-board parameter esti-
mation is not highly detrimental to the mechanistic approach. More-
over, when comparing the mechanistic approach with the capacity-
based approach, the mechanistic approach tends to provide a more
stable error, and therefore, a more stable prognostics response. This is
demonstrated by the more linear trend of the error for any given fitting

Table 1
Tabulated RUL RMSE for each cell using the capacity-based and mechanistic prognostics methods.

capacity-based

cell #1 cell #2 cell #3 cell #4 cell #5 cell #6 cell #7 cell #8
1 parameter 0.008 0.035 0.061 0.055 0.045 0.122 0.193 0.224
2 parameters 0.072 0.130 0.113 0.045 0.103 0.149 0.209 0.179
unbounded 0.281 0.288 0.183 0.294 0.234 0.275 0.266 0.291
bounded 5% 0.023 0.041 0.053 0.049 0.034 0.070 0.131 0.159
bounded 10% 0.035 0.061 0.043 0.059 0.054 0.052 0.105 0.147
bounded 25% 0.072 0.119 0.079 0.092 0.106 0.058 0.059 0.165
bounded 50% 0.142 0.178 0.106 0.153 0.139 0.136 0.157 0.198
bounded 75% 0.188 0.217 0.132 0.195 0.169 0.189 0.209 0.225
linear dynamic 0.219 0.218 0.108 0.344 0.186 0.195 0.202 0.257
exponential dynamic 0.058 0.074 0.052 0.135 0.075 0.066 0.099 0.143
logarithmic dynamic 0.207 0.205 0.107 0.269 0.176 0.198 0.201 0.227

mechanistic prognostics
cell #1 cell #2 cell #3 cell #4 cell #5 cell #6 cell #7 cell #8

1 parameter 0.005 0.009 0.016 0.020 0.007 0.029 0.038 0.042
2 parameters 0.056 0.062 0.087 0.075 0.102 0.080 0.072 0.122
unbounded 0.282 0.307 0.258 0.322 0.297 0.281 0.294 0.267
bounded 5% 0.011 0.013 0.019 0.049 0.021 0.027 0.042 0.043
bounded 10% 0.020 0.018 0.028 0.056 0.027 0.023 0.041 0.041
bounded 25% 0.040 0.037 0.048 0.089 0.053 0.043 0.049 0.061
bounded 50% 0.065 0.063 0.092 0.112 0.097 0.078 0.083 0.092
bounded 75% 0.097 0.090 0.118 0.159 0.123 0.107 0.097 0.134
linear dynamic 0.091 0.085 0.083 0.190 0.124 0.116 0.125 0.250
exponential dynamic 0.037 0.026 0.043 0.057 0.036 0.050 0.068 0.118
logarithmic dynamic 0.120 0.105 0.129 0.127 0.107 0.126 0.136 0.147

Table 2
Tabulated RUL improvements for each cell using the mechanistic prognostics method in comparison to the capacity-based prognostics method.

improvement (mechanistic over capacity-based)

cell #1 cell #2 cell #3 cell #4 cell #5 cell #6 cell #7 cell #8
1 parameter 0.003 0.026 0.045 0.035 0.038 0.093 0.155 0.182
2 parameters 0.016 0.068 0.026 -0.030 0.001 0.069 0.137 0.057
unbounded -0.001 -0.019 -0.075 -0.028 -0.063 -0.006 -0.028 0.024
bounded 5% 0.012 0.028 0.034 0.000 0.013 0.043 0.089 0.116
bounded 10% 0.015 0.043 0.015 0.003 0.027 0.029 0.064 0.106
bounded 25% 0.032 0.082 0.031 0.003 0.053 0.015 0.010 0.104
bounded 50% 0.077 0.115 0.014 0.041 0.042 0.058 0.074 0.106
bounded 75% 0.091 0.127 0.014 0.036 0.046 0.082 0.112 0.091
linear dynamic 0.128 0.133 0.025 0.154 0.062 0.079 0.077 0.007
exponential dynamic 0.021 0.048 0.009 0.078 0.039 0.016 0.031 0.025
logarithmic dynamic 0.087 0.100 -0.022 0.142 0.069 0.072 0.065 0.080
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strategy. The dynamically bounded mechanistic approach controlled by
the exponential equation was found to possess an excellent ability to
function in the various noise levels investigated.

4.4. Computational efficiency

The proposed mechanistic prognostics approach is expected to re-
quire more data and computational resources than that of the classical
capacity-based prognostics approach, as annotated in Fig. 2. To quan-
tify the increase in computational resources, this study was analyzed
the computational time and memory required to perform online prog-
nostics for each of the eight cells. The analysis results are presented in
Table 3. These results were obtained for both prognostic approaches at
100 charge-discharge cycles using the NLLS algorithm with 50% static
bounds. The prognostic results for these cases are presented in Figs. 7(c)
and (f). On average, the mechanistic prognostics approach required
13.3 times more computational time (running on a single thread of a
3.4 GHz Intel 4770) and 1.14 times more peak memory than the ca-
pacity-based prognostics approach that uses the same NLLS algorithm.
No large variation in computational requirements was detected when
different bounds were applied to the NLLS algorithm. Therefore, for
brevity, these results are omitted.

5. Conclusion

This paper proposed a novel mechanistic approach to battery
prognostics that achieves remaining useful life (RUL) prediction of a
battery cell through tracking its degradation parameters and estimating
the cell’s capacity through the use of a half-cell model. In this

mechanistic (pyhsics-based) approach, each degradation parameter is
fitted to a mathematical model through the use of a non-linear least
squares (NLLS) solver. In addition to the newly proposed mechanistic
approach, this work also expands upon the use of NLLS for battery
prognostics through the introduction of dynamic bounds. This is
achieved through limiting the model coefficients solved for by NLLS to
within a predefined percentage of the coefficient used in fitting the
training data set, the predefined percentage is then allowed to increase
as the cell progresses through its life cycle. This increase is controlled
by a predefined function, here, an exponential function was shown to
provide the best results in terms of usable and stable RUL predictions.

The mechanistic approach was demonstrated, through simulated
data, to provide a marked improvement over a traditional capacity-
based prognostics approach. Simulations demonstrated an improve-
ment over the capacity-based approach 97.5% of the time when the
same parameter bounds were considered for both cases. The mechan-
istic approach does require that three parameters be tracked and a
surrogate model of the cell be solved and therefore requires 13.3 times
more computational time and 1.14 times more memory than that re-
quired by capacity-based prognostics approach. Furthermore, when
used in combination with the dynamic bounds for the NLLS solver, the
mechanistic prognostics approach was demonstrated to be a reliable
prognostics tool with a low level of uncertainty throughout the entire
life of a cell.

The battery prognostics approach introduced here can be leveraged
to equip existing battery management systems (BMSs) with the cap-
ability to explicitly consider the coupling effects of the major de-
gradation mechanisms on battery degradation and RUL prediction.
Future avenues for research include the use of other model-based

Fig. 10. Numerical investigations in terms of: (a) RUL prediction errors for the three dynamic bound equations, for capacity-based and mechanistic prognostics
inspected for a final bound value ranging from 1–500%; (b) noise robustness for the capacity-based approach; and (c) noise robustness for the mechanistic prog-
nostics approach.
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approaches already used for the capacity-based prognostics of battery
cells including Kalman filters, support vector machines, and particle
filters. Additionally, the analytical half-cell model used is this work

could be replaced with a more advanced model (e.g. a reduced-order
electrochemical model). Lastly, a long-term experimental validation of
the proposed prognostics approach is currently being performed in the
authors’ group by running long-term aging tests on commercial Li-ion
cells with a high-precision charger. These tests consider multiple dif-
ferent combinations of temperature and discharge rate. We plan to
analyze the data from the experimental validation and report out the
validation results in our future work.
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